organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Başak Koşar,^a Çiğdem Albayrak,^b Mustafa Odabaşoğlu^b and Orhan Büyükgüngör^a*

^aDepartment of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, and ^bDepartment of Chemistry, Ondokuz Mayıs University, TR-55139, Samsun, Turkey

Correspondence e-mail: orhanb@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 291 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.043 wR factor = 0.116 Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-[(3-Chlorophenyl)diazenyl]-6-methoxy-2-{[tris(hydroxymethyl)methyl]aminomethylene}cyclohexa-3,5-dien-1(2*H*)-one

The title compound, $C_{18}H_{20}ClN_3O_5$, adopts the keto-amine tautomeric form and displays an intramolecular $N-H\cdots O$ hydrogen bond. The configuration around the azo N=N double bond is *trans* and the dihedral angle between the two aromatic rings is $10.0 (1)^\circ$. Intermolecular $O-H\cdots O$ hydrogen bonds form a three-dimensional network.

Received 23 December 2003 Accepted 5 January 2004 Online 17 January 2004

Comment

Azo dyes are widely used in the textile, printing, paper manufacturing, pharmaceutial and food industries. The great majority of them are monoazo compounds, which have the common structural unit of the azo chromophore, -N = N-, linking two aromatic systems. There is considerable interest in Schiff base ligands and their complexes due to their striking antitumour activities (Zhou *et al.*, 2000). *N*-substituted *o*-hydroxyimines have been reported to display thermochromism and photochromism in the solid state *via* H-atom transfer from the hydroxy O atom to the N atom (Hadjoudis *et al.*, 1987; Xu *et al.*, 1994). Against this background, we present here the structure of the title compound, (I).

A displacement ellipsoid plot of (I) and a packing diagram are shown in Figs. 1 and 2, respectively. In this molecule, the bond lengths and angles (Table 1) are very similar to those in the azo compound studied previously (Odabaşoğlu, Albayrak, Büyükgüngör & Goesmann, 2003). The chloro, imino, hydroxy and methoxy group linkages distort the C····C bond lengths of the benzene rings [1.353 (3)–1.447 (3) Å] compared with their value in benzene. The N=N bond of 1.260 (2) Å agrees with that in the related compound [1.256 (2) Å; Odabaşoğlu, Albayrak, Büyükgüngör & Goesmann, 2003] and is longer than the calculated value of 1.250 Å in CH₃–N=N–CH₃ (Baht *et al.*, 2000), suggesting electron delocalization. The dihedral angle between the chlorophenyl and salicylidene rings is 10.0 (1)°. This value agrees with the values of 5–15° observed for *E*-azobenzenes (Brown, 1966).

The molecular structure of (I) is the keto-amine tautomer, as indicated by the following bond lengths: C10-O1 1.272 (2), C7-C8 1.366 (3) and C11-C12 1.353 (3) Å. In our previous work, these bond lengths are 1.2892 (18), 1.360 (3) and 1.364 (2) Å, respectively (Odabaşoğlu, Albayrak, Büyük-

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 1

A view of the molecule of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.

Figure 2

A packing diagram for (I). Broken lines indicate hydrogen bonds.

güngör & Lönnecke, 2003). These elongations and contractions are due to the 3-chlorophenyldiazenyl linkage on the salicylidene ring. In addition, the C10-O1 and C11-C12 bond lengths in N-(2-fluoro-3-methoxy)-salicylaldimine, which is in the phenol-imine tautomeric form, are 1.347 (3) and 1.374 (3) Å, respectively (Ünver et al., 2002). The hydroxyl H atom was located on N3, thus confirming a preference for the keto-amine tautomer of (I) in the solid state.

There is a strong intramolecular N3-H1...O1 hydrogen bond in (I) (Table 2), which is a common feature of o-hydroxysalicylidene systems (Odabaşoğlu, Albayrak, Büyükgüngör & Lönnecke, 2003; Odabaşoğlu, Albayrak, Büyükgüngör & Goesmann, 2003; Filarowski et al., 2003; Nazır et al., 2000; Yıldız et al., 1998). The dihedral angle between the $N-H \cdots O$ hydrogen-bonded ring and the salicylidene ring is $2.1(1)^{\circ}$.

Experimental

The title compound, (I), was prepared as described by Odabaşoğlu, Albayrak, Büyükgüngör & Goesmann (2003), using o-vanillin, 3-chloroaniline and tris(hydroxymethyl)aminomethane as starting

materials. The product was recrystallized from ethanol and well shaped crystals of (I) were obtained by slow evaporation of an acetonitrile solution (yield 85%; m.p. 496-498 K).

 $D_x = 1.363 \text{ Mg m}^{-3}$

Cell parameters from 12 137

2571 reflections with $I > 2\sigma(I)$

All H-atom parameters refined

 $w = 1/[\sigma^2(F_o^2) + (0.0703P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

Mo $K\alpha$ radiation

reflections $\theta = 1.9 - 28.3^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$

T = 291 KPlate, orange $0.50 \times 0.50 \times 0.16 \ \mathrm{mm}$

 $R_{\rm int} = 0.075$

 $\theta_{\rm max} = 26.0^{\circ}$

 $h = -13 \rightarrow 13$

 $k = -15 \rightarrow 15$

 $l = -18 \rightarrow 18$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$

Crystal data

C ₁₈ H ₂₀ ClN ₃ O ₅
$M_r = 393.82$
Monoclinic, $P2_1/c$
a = 10.6950 (8) Å
b = 12.3204 (10) Å
c = 14.8486 (12) Å
$\beta = 101.144~(6)^{\circ}$
V = 1919.7 (3) Å ³
Z = 4
Data collection

Stoe IPDS 2 diffractometer ω scans Absorption correction: by integration (X-RED; Stoe & Cie, 2002) $T_{\min} = 0.850, \ T_{\max} = 0.963$ 13 394 measured reflections 3776 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.116$ S = 0.943776 reflections 324 parameters

Table 1

Selected geometric parameters (Å, °).

1.430 (3)
1.272 (2)
1.353 (3)
1.296 (2)
1.470 (2)
1.260 (2)
122.98 (17)
125.83 (18)
123.63 (18)
111.37 (15)
127.05 (16)
179.53 (16)

Table 2			
Hvdrogen-bonding	geometry	(Å.	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H1···O1	0.88 (3)	1.88 (3)	2.643 (2)	145 (3)
$O2-H22\cdots O3^i$	0.88 (3)	1.88 (3)	2.759 (2)	173 (3)
O3−H33···O1 ⁱⁱ	0.80(3)	2.33 (3)	3.014 (2)	144 (3)
O3−H33···O5 ⁱⁱ	0.80(3)	2.14 (3)	2.829 (2)	144 (3)
$O4{-}H44{\cdot}{\cdot}{\cdot}O1^{ii}$	0.91 (3)	1.85 (3)	2.747 (2)	165 (3)

Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) 1 - x, $\frac{1}{2} + y$, $\frac{1}{2} - z$.

All H-atom parameters were freely refined. The C-H distances are in the range 0.92 (2)–1.04 (3) Å and $U_{iso}(H)$ values are in the range 0.44 (5)–0.88 (10) \AA^2 . Although the structure contains solvent accessible voids of 48 Å³, no small molecules can be detected in the structure, as evidenced from the difference Fourier map.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1998).

References

- Baht, K. L., Freeman, H. S., Velga, J., Sztandera, L., Tracthman, M. & Bock,
- C. W. (2000). *Dyes Pigm.* **46**, 109–119. Brown, C. J. (1966). *Acta Cryst.* **21**, 146–152.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1998). WinGX. University of Glasgow, Scotland.
- Filarowski, A., Koll, A. & Glowiaka, T. (2003). J. Mol. Struct. 644, 187-195.

- Hadjoudis, E., Vitterakis, M. & Maviridis, I. M. (1987). *Tetrahedron*, **43**, 1345–1360.
- Nazır, H., Yıldız, M., Yılmaz, H., Tahir, M. N. & Ülkü, D. (2000). J. Mol. Struct. 524, 241–250.
- Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Goesmann, H. (2003). Acta Cryst. C59, 0234–0236.
- Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o616–o619.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Ünver, H., Kendi, E., Güven, K. & Durlu, T. (2002) Z. Naturforsch. Teil B, **57**,
- 685–690. Xu, X., You, X., Sun, Z., Wang, X. & Liu, H. (1994). Acta Cryst. C**50**, 1169– 1171.
- Yıldız, M., Kılıç, Z. & Hökelek, T. (1998). J. Mol. Struct. 441, 1-10.
- Zhou, Y.-S., Zhang, L.-J., Zeng, X.-R., Vital, J. J. & You, X.-Z. (2000). J. Mol. Struct. 553, 25–30.